Строго говоря, интерфейс RS 232 - это название стандарта (RS — recommended standard — рекомендованный стандарт, 232 — его номер), описывающего интерфейс для соединения компьютера и устройства передачи данных.

Стандарт был разработан достаточно давно, в 60-х годах 20-го века. В настоящее время действует редакция стандарта, принятая в 1991 году ассоциациями электронной и телекоммуникационной промышленности, под названием EIA/TIA-232-E .

Тем не менее, большинство людей по-прежнему использует название RS-232, которое накрепко приросло к самому интерфейсу.

Устройства

Интерфейс RS-232 обеспечивает соединение двух устройств, одно из которых называется DTE (Data Terminal Equipment) - ООД (Оконечное Оборудование Данных), второе - DCE (Data Communications Equipment) - ОПД (Оборудование Передачи Данных).

Как правило, DTE (ООД) - это компьютер, а DCE (ОПД) - это модем, хотя RS-232 использовался и для подключения к компьютеру периферийных устройств (мышь, принтер), и для соединения с другим компьютером или .

Важно запомнить эти обозначения (DTE и DCE). Они используются в названиях сигналов интерфейса и помогают разобраться с описанием конкретной реализации.

Типы разъемов

Изначально стандарт описывал применение 25-контактного соединителя, типа DB25. DTE-устройство должно оснащаться вилкой (male — «папа»), DCE-устройство - розеткой (female — «мама»). Позднее, с появлением IBM PC, стали использовать усеченный вариант интерфейса и 9-контактные соединители DB9, наиболее распространенные в настоящее время.

Распайка RS-232

В приведенной ниже таблице показано назначение контактов 9-контактного соединителя DB9. Таблица показывает распайку вилки оборудования обработки данных (DTE) , например, ПЭВМ. Розетка устройства передачи данных (DCE) распаяна так, что два разъема стыкуются напрямую, или через кабель, распаянный «контакт в контакт».

1 - Carrier Detect (CD) Наличие несущей частоты

2 - Received Data (RD) Принимаемые данные

3 - Transmitted Data (TD) Передаваемые данные

4 - Data Terminal Ready (DTR) Готовность ООД

5 - Signal Ground Общий

6 - Data Set Ready (DSR) Готовность ОПД

7 - Request To Send (RTS) Запрос на передачу

8 - Clear To Send (CTS) Готов передавать

9 - Ring Indicator (RI) Наличие сигнала вызова

Для передачи данных предназначены цепи RD и TD. Остальные цепи предназначены для индикации состояния устройств (DTR, DSR), управления передачей (RTS, CTS) и индикации состояния линии (CD, RI). Полный набор цепей используется только для подключения к ПЭВМ внешнего модема. В остальных случаях, например при подключении к ПЭВМ промышленного контроллера, используется ограниченный набор цепей, зависящий от аппаратной и программной реализации стыка в контроллере.

Схема кабеля RS-232

Как было сказано выше, для соединения строго соответствующих стандарту устройств DTE и DCE нужен кабель «контакт в контакт». Для соединения двух DTE-устройств используют так называемые нуль-модемные кабели, в которых провода «перекрещиваются» в соответствии с назначением сигналов. На практике перед распайкой кабеля всегда следует разобраться с документацией на оба соединяемых устройства.

Стартовый бит всегда идет уровнем логического нуля, стоповый - единицей. Состояние бита паритета определяется настройкой передатчика. Бит дополняет число единичных битов данных до нечетности (parity odd), четности (parity even), может не использоваться (parity none), быть всегда единицей (mark) или нулем (space).

Перспективы

На самом деле перспектив у RS-232 нет. В настоящее время появляется всё больше компьютеров, не оснащенных этим интерфейсом. Однако в эксплуатации находится большое число устройств с интерфейсом RS-232. Для стыковки ПЭВМ с такими устройствами используют переходники USB — RS-232.

После подключения такого переходника и установки драйверов в ПЭВМ появляется виртуальный COM-порт, через который можно общаться с устройством.

Описание интерфейса RS-232, формат используемых разъемов и назначение выводов, обозначения сигналов, протокол обмена данными.

Общее описание

Интерфейс RS-232, совсем официально называемый "EIA/TIA-232-E", но более известный как интерфейс "COM-порта", ранее был одним из самых распространенных интерфейсов в компьютерной технике. Он до сих пор встречается в настольных компьютерах, несмотря на появление более скоростных и "интеллектуальных" интерфейсов, таких как USB и FireWare. К его достоинствам с точки зрения радиолюбителей можно отнести невысокую минимальную скорость и простоту реализации протокола в самодельном устройстве.

Физический интерфейс реализуется одним из двух типов разъемов: DB-9M или DB-25M, последний в выпускаемых в настоящее время компьютерах практически не встречается.

Назначение выводов 9-контактного разъема


9-контактная вилка типа DB-9M
Нумерация контактов со стороны штырьков
Направление сигналов указано относительно хоста (компьютера)
Контакт Сигнал Направление Описание
1 CD Вход Обнаружена несущая
2 RXD Вход Принимаемые данные
3 TXD Выход Передаваемые данные
4 DTR Выход Хост готов
5 GND - Общий провод
6 DSR Вход Устройство готово
7 RTS Выход Хост готов к передаче
8 CTS Вход Устройство готово к приему
9 RI Вход Обнаружен вызов

Назначение выводов 25-контактного разъема

Контакт Сигнал Направление Описание
1 SHIELD - Экран
2 TXD Выход Передаваемые данные
3 RXD Вход Принимаемые данные
4 RTS Выход Хост готов к передаче
5 CTS Вход Устройство готово к приему
6 DSR Вход Устройство готово
7 GND - Общий провод
8 CD Вход Обнаружена несущая
9 - - Резерв
10 - - Резерв
11 - - Не используется
12 SCD Вход Обнаружена несущая #2
13 SCTS Вход Устройство готово к приему #2
Контакт Сигнал Направление Описание
14 STXD Выход Передаваемые данные #2
15 TRC Вход Тактирование передатчика
16 SRXD Вход Принимаемые данные #2
17 RCC Вход Тактирование приемника
18 LLOOP Выход Локальная петля
19 SRTS Выход Хост готов к передаче #2
20 DTR Выход Хост готов
21 RLOOP Выход Внешняя петля
22 RI Вход Обнаружен вызов
23 DRD Вход Определена скорость данных
24 TRCO Выход Тактирование внешнего передатчика
25 TEST Вход Тестовый режим

Из таблиц видно, что 25-контактный интерфейс отличается наличием полноценного второго канала приема-передачи (сигналы, обозначенные "#2"), а также многочисленных дополнительных управляющих и контрольных сигналов. Однако, часто, несмотря на наличие в компьютере "широкого" разъема, дополнительные сигналы на нем просто не подключены.

Электрические характеристики

Логические уровни передатчика: "0" - от +5 до +15 Вольт, "1" - от -5 до -15 Вольт.

Логические уровни приемника: "0" - выше +3 Вольт, "1" - ниже -3 Вольт.

входное сопротивление приемника не менее 3 кОм.

Данные характеристики определены стандартом как минимальные, гарантирующие совместимость устройств, однако реальные характеристики обычно существенно лучше, что позволяет, с одной стороны, питать маломощные устройства от порта (например, так спроектированы многочисленные самодельные data-кабели для сотовых телефонов), а с другой - подавать на вход порта инвертированный TTL-уровень вместо двуполярного сигнала.

Описание основных сигналов интерфейса

CD - Устройство устанавливает этот сигнал, когда обнаруживает несущую в принимаемом сигнале. Обычно этот сигнал используется модемами, которые таким образом сообщают хосту о обнаружении работающего модема на другом конце линии.

RXD - Линия приема хостом данных от устройства. Подробно описана в разделе "Протокол обмена данными".

TXD - Линия передачи хостом данных к устройству. Подробно описана в разделе "Протокол обмена данными".

DTR - Хост устанавливает этот сигнал, когда готов к обмену данными. Фактически сигнал устанавливается при открытии порта коммуникационной программой и остается в этом состоянии все время, пока порт открыт.

DSR - Устройство устанавливает этот сигнал, когда включено и готово к обмену данными с хостом. Этот и предыдущий (DTR) сигналы должны быть установлены для обмена данными.

RTS - Хост устанавливает этот сигнал перед тем, как начать передачу данных устройству, а также сигнализирует о готовности к приему данных от устройства. Используется при аппаратном управлении обменом данными.

CTS - Устройство устанавливает этот сигнал в ответ на установку хостом предыдущего (RTS), когда готово принять данные (например, когда предыдущие присланные хостом данные переданы модемом в линию или есть свободное место в промежуточном буфере).

RI - Устройство (обычно модем) устанавливает этот сигнал при получении вызова от удаленной системы, например при приеме телефонного звонка, если модем настроен на прием звонков.

Протокол обмена данными

В протоколе RS-232 существуют два метода управления обменом данных: аппаратный и программный, а также два режима передачи: синхронный и асинхронный. Протокол позволяет использовать любой из методов управления совместно с любым режимом передачи. Также допускается работа без управления потоком, что подразумевает постоянную готовность хоста и устройства к приему данных, когда связь установлена (сигналы DTR и DSR установлены).

Аппаратный метод управления реализуется с помощью сигналов RTS и CTS. Для передачи данных хост (компьютер) устанавливает сигнал RTS и ждет установки устройством сигнала CTS, после чего начинает передачу данных до тех пор, пока сигнал CTS установлен. Сигнал CTS проверяется хостом непосредственно перед началом передачи очередного байта, поэтому байт, который уже начал передаваться, будет передан полностью независимо от значения CTS. В полудуплексном режиме обмена данными (устройство и хост передают данные по очереди, в полнодуплексном режиме они могут делать это одновременно) снятие сигнала RTS хостом означает его переход в режим приема.

Программный метод управления заключается в передаче принимающей стороной специальных символов остановки (символ с кодом 0x13, называемый XOFF) и возобновления (символ с кодом 0x11, называемый XON) передачи. При получении данных символов передающая сторона должна соответственно остановить передачу или возобновить ее (при наличии данных, ожидающих передачи). Этот метод проще с точки зрения реализации аппаратуры, однако обеспечивает более медленную реакцию и соответственно требует заблаговременного извещения передатчика при уменьшении свободного места в приемном буфере до определенного предела.

Синхронный режим передачи подразумевает непрерывный обмен данными, когда биты следуют один за другим без дополнительных пауз с заданной скоростью. Этот режим COM-портом не поддерживается .

Асинхронный режим передачи состоит в том, что каждый байт данных (и бит контроля четности, в случае его наличия) "оборачивается" синхронизирующей последовательностью из одного нулевого старт-бита и одного или нескольких единичных стоп-битов. Схема потока данных в асинхронном режиме представлена на рисунке.

Один из возможных алгоритмов работы приемника следующий:

  1. Ожидать уровня "0" сигнала приема (RXD в случае хоста, TXD в случае устройства).
  2. Отсчитать половину длительности бита и проверить, что уровень сигнала все еще "0"
  3. Отсчитать полную длительность бита и текущий уровень сигнала записать в младший бит данных (бит 0)
  4. Повторить предыдущий пункт для всех остальных битов данных
  5. Отсчитать полную длительность бита и текущий уровень сигнала использовать для проверки правильности приема с помощью контроля четности (см. далее)
  6. Отсчитать полную длительность бита и убедиться, что текущий уровень сигнала "1".

При вычислении последовательный порт представляет собой последовательный интерфейс связи, через который информация передается или выдается за раз. На протяжении большей части истории персональных компьютеров данные передавались через последовательные порты на устройства, такие как модемы, терминалы и различные периферийные устройства.

Хотя такие интерфейсы, как Ethernet, FireWire и USB, все отправляют данные в виде последовательного потока, термин «последовательный порт» обычно идентифицирует аппаратное обеспечение, более или менее совместимое со стандартом RS-232, предназначенное для взаимодействия с модемом или с аналогичной связью Устройства.

Современные компьютеры без последовательных портов могут потребовать конвертеры с последовательным интерфейсом, чтобы обеспечить совместимость с последовательными устройствами RS-232. Серийные порты все еще используются в таких приложениях, как системы промышленной автоматизации, научные приборы, системы продаж и некоторые промышленные и потребительские товары. Серверные компьютеры могут использовать последовательный порт в качестве консоли управления или диагностики. Сетевое оборудование (например, маршрутизаторы и коммутаторы) часто используют последовательную консоль для конфигурации. Серийные порты по-прежнему используются в этих областях, поскольку они просты, дешевы, а их консольные функции высоко стандартизированы и широко распространены.

Распиновка COM порта(RS232)

Существует 2-е разновидности com порта, 25-и пиновый старый разъем и сменившей его более новый 9-и пиновый разъем.

Ниже приведена схема типового стандартного 9-контактного разъема RS232 с разъемами, этот тип разъема также называется разъемом DB9.

  1. Обнаружение несущей(DCD).
  2. Получение данных(RXD).
  3. Передача данных(TXD).
  4. Готовность к обмену со стороны приемника(DTR).
  5. Земля(GND).
  6. Готовность к обмену со стороны источника(DSR).
  7. Запрос на передачу(RTS).
  8. Готовность к передаче(CTS).
  9. Сигнал вызова(RI).

RJ-45 к DB-9 Информация о выводе адаптера последовательного порта для коммутатора

Консольный порт представляет собой последовательный интерфейс RS-232, который использует разъём RJ-45 для подключения к управляющему устройству, например ПК или ноутбуку. Если на вашем ноутбуке или ПК нет штыря разъема DB-9, и вы хотите подключить ноутбук или ПК к коммутатору, используйте комбинацию адаптера RJ-45 и DB-9.

DB-9 RJ-45
Получение Данных 2 3
Передача данных 3 6
Готовность обмену 4 7
Земля 5 5
Земля 5 4
Готовность обмену 6 2
Запрос на передачу 7 8
Готовность к передаче 8 1

Цвета проводов:

1 Черный
2 Коричневый
3 Красный
4 Оранжевый
5 Желтый
6 Зеленый
7 Синий
8 Серый (или белый)

В системе «Орион» интерфейс RS-232 используется для подключения пульта контроля и управления «С2000»/«С2000М» к СОМ-порту компьютера с установленным на нем АРМ «Орион»/«Орион Про».
В системах, допускающих работу под управлением АРМ «Орион»/«Орион Про» без резервирования пультом «С2000»/«С2000М» (например, в системах охранной сигнализации или контроля доступа), интерфейс RS-232 используется для подключения преобразователя интерфейса «С2000-ПИ» или «ПИ-ГР» к СОМ-порту компьютера. К преобразователю, в свою очередь, подключаются приборы системы «Орион» по интерфейсу RS-485. RS-232 имеет следующие ограничения: максимальная длина – 15 м и соединение только типа «точка-точка», т.е. непосредственно подключить несколько пультов к одному СОМ-порту нельзя.
В простейшем случае к компьютеру подключается только один пульт. Эта схема приведена на рис.

Недостатком такой схемы является отсутствие гальванической изоляции между приборами и компьютером. Схема подключения пульта к компьютеру с использованием повторителя интерфейсов «С2000-ПИ», обеспечивающего гальваническую изоляцию, приведена на рис.

ВНИМАНИЕ! Во избежание гальванической связи между компьютером и приборами пульт, повторитель и приборы нельзя подключать к одному источнику питания. Питание на пульт и «С2000-ПИ» должно подаваться от отдельного источника.
Пульту должен быть присвоен сетевой адрес, и установлен режим «КОМПЬЮТЕР» для работы по интерфейсу RS-232.

С помощью преобразователей интерфейсов RS-232/RS-485 с автоматическим переключением приема/передачи (например, «С2000-ПИ») можно подключить несколько пультов к одному СОМ-порту компьютера. Один преобразователь следует подключить к СОМ-порту компьютера, остальные - к пультам по интерфейсу RS-232, а затем объединить преобразователи по интерфейсу RS-485 (см. схему на рис. выше). Кроме того, преобразователи обеспечат гальваническую изоляцию компьютера от пультов и приборов.
Для работы по интерфейсу RS-232 каждому пульту нужно задать уникальный сетевой адрес и режим «КОМПЬЮТЕР».
При использовании АРМ «Орион» к одному СОМ-порту можно подключить до 127 устройств. Либо это будет один пульт «С2000»/ «С2000М» и до 126 приборов, схема как на рисунках выше. Либо это будет несколько пультов с подключёнными приборами, как на рис.

При этом общее количество и пультов, и приборов не должно превышать 127. В такой системе все приборы и пульты должны иметь уникальные сетевые адреса от 1 до 127, т.е. адреса приборов, подключенных к разным пультам, не должны пересекаться.
При использовании АРМ «Орион Про» к каждому COM-порту можно подключить либо до 127 приборов (приборы подключаются через преобразователи интерфейсов «ПИ-ГР», «С2000-ПИ» или «C2000 USB»), либо до 127 пультов «С2000» или «С2000М». К каждому пульту при этом можно подключить до 127 приборов. При организации системы по второму варианту компьютер опрашивает не приборы, а пульты. Пульты, в свою очередь, опрашивают подключённые к ним приборы. Каждому пульту должен быть задан сетевой адрес (от 1 до 127). Адресация приборов в системе имеет 3 уровня (номер COM-порта, адрес пульта, адрес прибора), поэтому адреса приборов, подключённых к разным пультам, могут пересекаться, как и адреса пультов, подключённых к разным COM-портам компьютера. Максимальное количество устройств, подключаемых к одному компьютеру с «Оперативной задачей Орион Про», на сегодняшний день составляет 1024.
Как уже было сказано, такая схема применяется в случае, если к COM-порту нужно подключить несколько устройств. На текущий момент АРМ «Орион» поддерживает только один СОМ-порт. АРМ «Орион Про» поддерживает до 20 физических СОМ-портов и до 127 виртуальных СОМ-портов. При использовании АРМ «Орион Про» каждый пульт можно подключать к своему COM-порту (используя схему с гальванической изоляцией или без).

В настоящее время не все компьютеры имеют СОМ-порт. Для решения задачи подключения приборов системы «Орион» к компьютеру с АРМ можно применить USB-COM преобразователи, например, «USB-RS485», а также PCI-плату расширения портов. Основные достоинства данных PCI-плат:

  • возможность использовать до 8 COM-портов;
  • поддержка интерфейса RS-232/RS-485.

Специалистами компании «Болид» была протестирована плата расширения COM-портов MOXA CP 118U. Она позволяет подключать приборы по интерфейсу RS-485 напрямую к ПК с АРМ «Орион Про» (без использования преобразователя интерфейса), а также подключать несколько пультов (каждый к своему СОМ-порту).

Подключение приборов к компьютеру через пульты «С2000»/«С2000М» позволяет б|ольшую часть функций управления приборами переложить с АРМ на пульты. Здесь важно учитывать, что каждый пульт может управлять только подключёнными к нему приборами, поэтому взаимодействие приборов, подключённых к разным пультам, возможно только через АРМ. При неисправности компьютера каждый пульт будет управлять подключёнными к нему приборами в соответствие с запрограммированной в нем базой данных. То есть система распадается на несколько независимых подсистем.

Полученные от приборов сообщения сохраняются в кольцевом энергонезависимом буфере пультов, объем которого составляет 8000 событий (для «С2000М» вер.3.0х). При восстановлении работы компьютера эти сообщения будут вычитаны АРМ.

Допустим, в системе используется несколько приборов «С2000-КДЛ», релейных блоков «С2000-СП1», клавиатур «С2000-К» и блоков индикации «С2000-БИ». Причём из-за ограниченного размера базы данных пульта требуется использовать несколько пультов «С2000»/«С2000М». Каждый пульт организует взаимодействие только подключённых к нему приборов. В частности, он позволит отображать на блоках индикации состояния своих разделов, управлять этими разделами с клавиатур и с самого пульта, автоматически управлять релейными выходами своих блоков «С2000-СП1» от своих разделов. Взаимодействие приборов, подключённых к разным пультам, возможно только через АРМ. При отключении компьютера с работающим на нем АРМ эта связь нарушается. Поэтому если требуется, например, организовать релейный выход, который должен отрабатывать состояние всех шлейфов сигнализации системы, и этот выход должен работать при отключении компьютера, лучше его организовать путём монтажного объединения выходов каждой подсистемы (параллельного или последовательного, в зависимости от требуемой тактики работы выхода).

При подключении к АРМ нескольких подсистем следует использовать пульты «С2000М», так как при использовании пультов «С2000» будут следующие ограничения:

  1. Невозможно организовать централизованный контроль доступа;
  2. Управлять взятием/снятием с охраны разделов с клавиатур «С2000-К» и блока «С2000-4», прибора «С2000-КДЛ» и т.п. можно только в рамках одной подсистемы на пульте «С2000». Это означает, что с какой-либо клавиатуры «С2000-К» можно управлять взятием/снятием с охраны разделов того пульта, к которому подключена клавиатура. Управление с этой клавиатуры приборами, подключёнными к другим пультам, невозможно. Из оперативной задачи АРМ можно управлять взятием/снятием с охраны разделов всех подсистем. При использовании пульта «С2000М» первое ограничение снимается. Что касается второго, то можно управлять взятием/снятием с охраны разделов одной подсистемы с помощью всех приборов другой подсистемы, за исключением клавиатур «С2000-К». Например, используя считыватели устройств «С2000-4», «С2000-2», «С2000-КДЛ». Также можно управлять взятием/снятием с охраны разделов одной подсистемы с пульта «С2000М» другой подсистемы. Клавиатуры «С2000-К» так же, как и в первом случае, работают только в рамках своей подсистемы.

Помимо схемы, представленной на предыдущем рисунке, подключить несколько пультов «С2000М» к компьютеру с АРМ можно при помощи ЛВС и преобразователей «С2000-Ethernet».

Основными достоинствами ЛВС являются:

  • повсеместное использование сетей Ethernet;
  • высокая помехозащищенность;

Также при использовании «С2000-Ethernet» возможно объединение приборов ИСО «Орион» через глобальную сеть Internet используя VPN туннель.

Для трансляции по указной схеме необходима устойчивая связь между VPN шлюзами (зависит от характеристик выделенных каналов Internet).

В «С2000-Ethernet» имеется поддержка прямой передачи данных по ЛВС, т.е. на стороне ПК с АРМ используется только сеть Ethernet, а ПО формирует один виртуальный COM-порт для группы удаленных «C2000-Ethernet» (см. рис.). При этом повышается быстродействие и упрощается монтаж системы, т.к. на стороне АРМ нет необходимости использовать COM-порт.

Обращаем Ваше внимание на то, что развёрнутые протоколы испытаний устройств передачи данных по различным каналам связи, о которых дальше будет идти речь, с необходимыми настройками можно найти на сайте сайт в разделе «Техническая поддержка»/ «Рекомендации по применению».

Ещё одним вариантом подключения пульта «С2000М» к компьютеру с АРМ является использование волоконно-оптической линии связи и преобразователей «RS-FX-MM» (для многомодовых ВОЛС), «RS-FX-SM40» (для одномодовых ВОЛС).

Основные достоинства ВОЛС:

  • высокая помехозащищенность;
  • искро-взрывобезопасность;
  • высокая скорость передачи данных.

Компания «Болид» поставляет сертифицированные в соответствии с преобразователи информационных интерфейсов ИСО «Орион» в ВОЛС, которые могут применяться в том числе в системах АПС и пожарной автоматики. Максимальная длина передачи данных для преобразователя «RS-FX-MM» составляет 2 км, для преобразователя «RS-FX-SM40» - 40 км.

Организовать связь сетевого контроллера (компьютера с установленным АРМ «Орион»/ «Орион Про» или пульта «С2000»/«С2000М») с удаленными приборами ИСО «Орион» можно также с помощью стандартного цифрового канала связи в потоке Е1.

Основными достоинствами цифровых каналов связи являются:

  • высокая помехоустойчивость;
  • высокая степень защиты передаваемой информации;
  • высокая скорость передачи данных;
  • слабая зависимость качества передачи от длины линии связи.

Специалистами компании «Болид» была проверена работа системы «Орион» с применением мультиплексоров «ГМ-2» фирмы «Зелакс» для передачи сообщений по цифровому каналу связи в потоке Е1.

RS -232 – это название стандарта (RS– рекомендуемый стандарт, 232 – его номер), который был разработан в 60-х годах прошлого века для подключения к компьютеру внешних устройств (принтера, сканера, мыши и др.), а также связи компьютеров между собой. ИнтерфейсRS-232 разрабатывался для соединения устройств двух видов: терминального и связного. Терминальное оборудование (DTE), например компьютер, может посылать или принимать данные по последовательному интерфейсу. Связное оборудование (DCE) понимается как устройство, которое может практически реализовать последовательную передачу данных.

Наиболее часто в качестве DCEиспользуется модем, организующий обмен информацией с использованием телефонных линий связи. Возможно также соединение двухDTE-устройств, например, компьютеров непосредственно с помощью интерфейсаRS-232 без использования модемов. СтандартRS-232 описывает виды и параметры сигналов, способы их передачи, типы разъемов.

Разъемы RS -232. Применяются 25-контактный разъемDB-25 или более компактный 9-контактный вариантDB-9.

Сигналы RS -232. Стандарт предусматривает асинхронный и синхронный режимы обмена, но в настоящее время практически используется только асинхронный, тем более, чтоCOM-порты поддерживают только асинхронный режим. В интерфейсе имеются две линии сигналов последовательных данных:TxD– передаваемые иRxD– принимаемые, а также несколько линий сигналов управления:RTSиCTS– первая пара квитирования,DTRиDSR– вторая пара квитирования,DCDиRI– сигналы состояния модема. Имеется общий проводSG- сигнальное заземление и линияPG– защитное заземление (корпус).

В интерфейсе используется небалансный метод передачи сигналов с несимметричными передатчиками и приемниками. Соединение передатчика и приемника приведено на рис. 14.1, где приняты следующие условные обозначения: T(Transmitter) – передатчик;R(Receiver) – приемник;TI(TransmitterInput) – цифровой вход передатчика;RO(ReceiverOutput) – цифровой выход приемника;U T – линейное напряжения на выходе передатчика иU R – на входе приемника.

Рис. 14.1. Соединение передатчика и приемника в интерфейсе RS-232

Уровни сигналов на выходах передатчиков должны быть в диапазоне от -15 до -5 В для представления логической 1 и в диапазоне от +5 до +15 В для представления логического 0. На практике величина напряжений логических уровней сигналов не превышает ±12 В.

Форматы передачи данных. В интерфейсе RS-232 используется асинхронный метод передачи последовательных данных. В отсутствие передачи сообщений линии данных находятся в состоянии логической 1. Сообщения передаются кадрами. Каждый кадр состоит из стартового бита, битов данных, бита паритета и стоповых битов. Старт-бит всегда имеет уровень логического 0. Количество битов данных по стандарту может быть 5, 6, 7 и 8. Чаще всего используются 8 или 7 битов. Количество стоп-битов: 1 или 2. Стоповые биты всегда имеют уровень логической 1. Биты данных передаются, начиная с младшего. Скорость передачи в RS-232 может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с. Синхронизация генератора приемника осуществляется в момент поступления старт-бита из линии связи от передатчика.

Для преобразования параллельных данных в последовательные и наоборот, устройства, подключаемые к интерфейсу RS-232, должны иметь модуль универсального асинхронного приемопередатчика UART. Этот модуль работает, как правило, с сигналами ТТЛ-уровней. Для преобразования этих сигналов в уровни интерфейса RS-232 и наоборот используются передатчики и приемники.

Соединение устройств интерфейса. Стандарт RS-232 предполагает непосредственное соединение контактов разъемов устройств DTE и DCE. Если аппаратура DTE, например, два компьютера подключаются без модемов, то их разъемы соединяются между собой нуль-модемным кабелем. При этом возможно несколько вариантов подключения. На рис. а приведено соединение с полным протоколом квитирования. Оно требует 7 проводов кабеля. На рис. б приведен пример нуль-модемного соединения, которое требует только трех проводов кабеля для двустороннего обмена данными. Для того, чтобы устройства могли передавать данные по интерфейсу, их выходы RTS соединяются со своими входами CTS, а выходы DTR – со своими входами DSR и DCD. Таким образом, оба устройства DTE-1 и DTE-2 всегда будут готовы к передаче.

Соединение компьютеров нуль-модемным кабелем:

а) - с полным протоколом квитирования; б) - без сигналов квитирования

Управление потоком данных означает возможность остановить, а после этого возобновить передачу данных без их потери. Могут использоваться два варианта протокола: аппаратный и программный.

Аппаратный протокол управления потоком обычно использует пару сигналов квитирования RTS/CTS. При этом контакт RTS разъема одного устройства соединяется с контактом CTS разъема другого устройства. На рис. 14.3,а приведена схема подключения устройства DTE-1 (например, компьютера) к устройству DTE-2 (например, принтеру или контроллеру) при односторонней передаче.

Когда приемник (DTE-2) готов к приему, он устанавливает сигнал на контакте своего разъема RTS. Передатчик (DTE-1), получив этот сигнал на контакте CTS своего разъема, передает очередной байт данных. Если сигнал CTS на разъеме передатчика будет сброшен, то он прекращает передачу. Сообщение, которое уже начало передаваться, задержать сигналом CTS невозможно. Если необходима двусторонняя передача (дуплексный обмен), то аппаратный протокол требует перекрестного соединения линий RTS и CTS, как показано на рис. 14.3,б.

Программный протокол управления потоком заключается в посылке принимающей стороной специальных символов останова передачи XOFF и возобновления передачи XON. При этом предполагается наличие двунаправленного канала обмена данными. Работу этого протокола можно описать следующим образом. Передающее устройство посылает данные на контакт своего разъема TxD, а приемное принимает их с контакта RxD своего разъема. Если приемное устройство не может принимать данные, то оно посылает на линию связи (контакт TxD) байт-символ XOFF. Передатчик, приняв этот символ с контакта RxD, останавливает передачу. Затем, когда принимающее устройство снова становится готовым к приему данных, оно посылает байт-символ XON. Приняв его, передающее устройство возобновляет передачу.

Рис. 14.3. Соединение двух DTE с аппаратным протоколом управления потоком RTS/CTS: а) - при односторонней передаче; б) - при двусторонней передаче

Длина соединительного кабеля. Длина кабеля влияет на максимальную скорость передачи информации. Максимальная длина стандартного кабеля 15 метров при скорости передачи 19200 бит/с. При уменьшении скорости передачи длина кабеля может быть существенно увеличена.

Достоинства интерфейса RS -232 : большой парк работающего оборудования, использующего этот стандарт; простота и дешевизна соединительного кабеля; простота и доступность программного обеспечения для работы с интерфейсом.

Недостатки интерфейса : невысокая скорость обмена; малая длина соединительного кабеля; невысокая помехоустойчивость; интерфейс предназначен для соединения, как правило, только двух устройств (передатчика и приемника).