y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045...

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Решение:

Данный интеграл можно найти при помощи прямого интегрирования. Для этого найдем первообразную функции sin(x), а также воспользоваться свойством, по которому постоянную можно вынести за знак интеграла.

$$ \int 5 sin(x)dx = 5 \cdot \int sin(x)dx = 5 \cdot (-cos(x)) + C = -5cos(x) + C$$

Ответ:

$$ \int 5 sin(x)dx = -5cos(x) + C$$

  • Определите интеграл $$ \int \frac{dx}{\sqrt{5-4x^2}} $$ .

    Решение:

    Для решения данного интеграла необходимо преобразовать выражение, после чего найти первообразную. Сначала вынесем общий множитель:

    $$ \int \frac{dx}{\sqrt(5-4x^2)} = \frac{1}{2} \cdot \int \frac{dx}{\sqrt{(\frac{5}{4-x^2})}} = \frac{1}{2} \cdot \int \frac{dx}{\sqrt{ \left((\sqrt{(\frac{5}{4})})^2 -x^2 \right) }} $$

    Теперь можно использовать табличный интеграл:

    $$ \int \frac{dx}{\sqrt{(5-4x^2)}} = \frac{1}{2} \cdot arcsin \left(\sqrt{(\frac{5}{4})} \cdot x \right) + C$$

    Ответ:

    $$ \int \frac{dx}{\sqrt{5-4x^2}} = \frac{1}{2} \cdot arcsin \left(\sqrt{(\frac{5}{4})} \cdot x \right) + C $$

  • Найдите интеграл $$ \int tg xdx $$ .

    Решение:

    Чтобы найти интеграл потребуется внесение переменной под знак дифференциала:

    $$ \int tg xdx = \int sin \frac{xdx}{cos x} = - \int d cos \frac{x}{cos x} $$

    Теперь воспользуемся табличным интегралом:

    $$ - \int dcos \frac{x}{cos x} = ln |cos x| + C $$

    Ответ:

    $$ \int tg xdx = ln |cos x| + C$$

  • Найдите интеграл $$ \int(1+2sin x)^2 \cdot cos xdx $$ .

    Решение:

    Чтобы решить этот интеграл целесообразно преобразовать его, внеся одну из функций под знак дифференциала, а затем произвести замену переменной:

    $$ \int (1 + 2sin x)^2 \cdot cos xdx = \frac{1}{2} \int (1 + 2sin x)^2 d (1 + 2sin x) $$

    Произведем замену переменной 1+2sin x=t:

    $$ \frac{1}{2} \int t^2 dt = \frac{1}{2} \cdot \frac{t^3}{3} + C = \frac{t^3}{6} + C = \frac{(1 + 2sin x)^3}{6} + C$$

    Ответ:

    $$ \int(1+2sin x)^2 \cdot cos xdx = \frac{(1 + 2sin x)^3}{6} + C$$

  • Найдите интеграл $$ \int x \cdot sin x dx $$ .

    Решение:

    Чтобы найти данный интеграл, используем правила интегрирования по частям $$ \int vdu=vu- \int udv $$. Преобразуем интеграл:

    $$ \int x \cdot sin x dx = - \int x d cos x = -(x \cdot x - \int cos x dx) $$

    Сводим к табличному интегралу:

    $$ - (x \cdot cos x - \int cos x dx) = -(x \cdot cos x - sin x) + C = sin x - x \cdot cos x + C $$

    Ответ:
  • Найдите интеграл $$ \int \frac{ (x+1)dx }{ (x^2 - 3x + 2) } $$ .

    Решение:

    При интегрировании рациональной функции разбиваем ее на несколько более простых при помощи метода неопределенных коэффициентов. По теореме Виета можно определить корни знаменателя 1 и 2. Тогда функция приобретет вид:

    $$ \frac{(x+1)}{ ((x-2) \cdot (x-1)) } $$

    Применяя метод неопределенных коэффициентов, получим:

    $$ \frac{(A(x-1) + B(x-2))}{((x-2) \cdot (x-1))} = \frac{ ((A+B)x-A-2B) }{ ((x-2)\cdot(x-1)) } $$

    Составим систему уравнений:

    $$ \begin{cases} A + B = 1 \\ -A-2B = 1 \end{cases} $$

    Решая ее, получим:

    $$ \frac{(x+1)}{((x-2)\cdot (x-1))} = \frac{3}{(x-2)} - \frac{2}{(x-1)} $$

    Вернемся к интегрированию:

    $$ \int \frac{3}{(x-2)dx} - \int \frac{2}{(x-1)dx} = 3 \cdot ln |x-2| -2 \cdot ln|x-1| + C $$

    Ответ:

    $$ \int x \cdot sin x dx = sin x - x \cdot cos x + C $$

  • Найдите интеграл $$ \int tg^33xdx $$ .

    Решение:

    Чтобы найти интеграл воспользуемся тригонометрической заменой tg3x=t, тогда

    $$ x= \frac{1}{3} \cdot arctg t, \quad dx= \frac{dt}{(3(1+t²))} $$

    Произведем подстановку:

    $$ \int tg^33xdx = \int \frac{t^3 dt}{(3 \cdot (1+t^2))} = \frac{1}{3} \left(\int \frac{(t^3 + t)dt}{(1+t^2)} - \int \frac{tdt}{(1+t^2)} \right) = $$ $$ = \frac{1}{3}(\int tdt - \frac{1}{2} \cdot \int \frac{2tdt}{(1+t^2)}) = \frac{1}{3} (\frac{t^2}{2} - \frac{1}{2} \cdot \int \frac{d(1+t^2)}{(1+t^2)}) = $$ $$ = \frac{t^2}{6} - \frac{1}{6} \cdot ln|1+t^2|+C = tg^2\frac{3x}{6} - \frac{1}{6} \cdot ln|1+tg^23x| + C$$

    Ответ:

    $$ \int tg^33xdx = tg^2\frac{3x}{6} - \frac{1}{6} \cdot ln|1+tg^23x| + C $$

  • Найдите интеграл $$ \int sin^2xdx $$ .

    Решение:

    Применим тригонометрическую формулу, связанную с двойным аргументом $$ sin^2x=\frac{(1-cos 2x)}{2} $$, после чего разобьем интеграл на два более простых:

    ∫sin²xdx=1/2·∫(1-cos 2x)dx=1/2·∫dx-1/2·∫cos 2xdx=1/2·∫dx-1/4·∫cos 2xd2x=1/2·x-1/4·sin 2x+C=1/2·(x-sin 2x/2)+C $$ \int sin^2xdx = \frac{1}{2} \cdot \int(1-cos 2x)dx = \frac{1}{2} \cdot \int dx -\frac{1}{2} \int cos 2xdx =$$ $$ = \frac{1}{2} \cdot \int dx - \frac{1}{4} \cdot \int cos 2xdx = \frac{1}{2} \cdot x - \frac{1}{4} \cdot sin 2x + C = \frac{1}{2} \cdot (x - sin \frac{2x}{2}) + C $$

    Ответ:

    $$ \int sin^2xdx = \frac{1}{2} \cdot (x - sin \frac{2x}{2}) + C $$

  • Найдите интеграл $$ \int \frac{(x+1)dx}{\sqrt(3-x^2)} $$ .

    Решение:

    Сначала разложим интеграл на 2 более простых, а затем произведем замену:

    $$ \int \frac{(x+1)dx}{\sqrt{(3-x^2)}} = \int \frac{xdx}{ \sqrt{(3-x^2)} } + \int \frac{dx}{ \sqrt{(3-x^2)} } $$

    Возьмем каждый из интегралов по отдельности:

    $$ \int \frac{xdx}{ \sqrt{(3-x^2)} } = \frac{1}{2} \cdot \int \frac{dx^2}{ \sqrt{(3-x^2)} } = - \frac{1}{2} \cdot \int \frac{d(3-x^2)}{ \sqrt(3-x^2) } = - \sqrt{(3-x^2)} + C $$

    $$ \int \frac{dx}{ \sqrt{(3-x^2)} } = arcsin \frac{x}{ \sqrt{3} } +C $$

    $$ \int \frac{(x+1)dx}{\sqrt{(3-x^2)} } = arcsin \frac{x}{\sqrt{3}} - \sqrt{(3 - x^2)} + C $$

    Ответ:

    $$ \int \frac{(x+1)dx}{\sqrt(3-x^2)} = arcsin \frac{x}{\sqrt{3}} - \sqrt{(3 - x^2)} + C $$

  • Найдите интеграл $$ \int x \cdot ln^2 xdx $$ .

    Решение:

    Чтобы найти интеграл необходимо дважды применить интегрирование по частям. Получим:

    $$ \int x \cdot ln^2 xdx = \frac{1}{2} \cdot \int ln^2xdx^2 = \frac{1}{2} \cdot (ln^2 x \cdot x^2 - \int x^2d ln^2x) = \frac{1}{2} \cdot (ln^2x \cdot x^2 - \int x^2 \cdot 2 \cdot ln \frac{xdx}{x})= $$

    $$ = \frac{1}{2} \cdot (ln^2x \cdot x^2 - 2 \cdot \int x \cdot ln xdx) = \frac{1}{2} \cdot (ln^2x \cdot x \cdot x^2 - 2 \cdot \frac{1}{2} \cdot (ln x \cdot x^2 - \int xdx)) = ln^2 x \cdot \frac{x^2}{2} - \frac{x^2}{4} +C$$

    Ответ:

    $$ \int x \cdot ln^2 xdx = ln^2 x \cdot \frac{x^2}{2} - \frac{x^2}{4} +C $$

  • Нахождение неопределенного интеграла является очень частой задачей в высшей математике и других технических разделах науки. Даже решение простейших физических задач часто не обходится без вычисления нескольких простых интегралов. Поэтому со школьного возраста нас учат приемам и методам решения интегралов, приводятся многочисленные таблицы с интегралами простейших функций. Однако со временем всё это благополучно забывается, либо у нас не хватает времени на рассчеты или нам нужно найти решение неопределеленного интеграла от очень сложной функции. Для решения этих проблем для вас будет незаменим наш сервис, позволяющий безошибочно находить неопределенный интеграл онлайн .

    Решить неопределенный интеграл

    Онлайн сервис на сайт позволяет находить решение интеграла онлайн быстро, бесплатно и качественно. Вы можете заменить поиск по таблицам нужного интеграла нашим сервисом, где быстро введя нужную функции, вы получите решение неопределенного интеграла в табличном варианте. Не все математические сайты способны вычислять неопределенные интегралы функций в режиме онлайн быстро и качественно, особенно если требуется найти неопределенный интеграл от сложной функции или таких функций, которые не включены в общий курс высшей математики. Сайт сайт поможет решить интеграл онлайн и справиться с поставленной задачей. Используя онлайн решение интеграла на сайте сайт, вы всегда получите точный ответ.

    Даже если вы хотите вычислить интеграл самостоятельно, благодаря нашему сервису вам будет легко проверить свой ответ, найти допущенную ошибку или описку, либо же убедиться в безукоризненном выполнении задания. Если вы решаете задачу и вам как вспомогательное действие необходимо вычислить неопределенный интеграл, то зачем тратить время на эти действия, которые, возможно, вы уже выполняли тысячу раз? Тем более, что дополнительные расчеты интеграла могут быть причиной описки или маленькой ошибки, приведших впоследствии к неверному ответу. Просто воспользуйтесь нашими услугами и найдите неопределенный интеграл онлайн без каких-либо усилий. Для практических задач по нахождению интеграла функции онлайн этот сервер очень полезен. Необходимо ввести заданную функцию, получить онлайн решение неопределенного интеграла и сравнить ответ с вашим решением.