Рассмотрим в данной статье основные методы коммутации в сетях.

В традиционных телефонных сетях, связь абонентов между собой выполняется с помощью коммутации каналов связи. В начале коммутация телефонных каналов связи выполнялась вручную, далее коммутацию выполняли автоматические телефонные станции (АТС).

Аналогичный принцип используется и в вычислительных сетях. В качестве абонентов выступают территориально удаленные вычислительные машины в компьютерной сети. Физически не представляется возможным предоставить каждому компьютеру свою собственную некоммутируемую линию связи, которой они пользовались бы в течении всего времени. Поэтому практически во всех компьютерных сетях всегда используется какой-либо способ коммутации абонентов (рабочих станций), выполняющий возможность доступа к существующим каналам связи для нескольких абонентов, для обеспечения одновременно нескольких сеансов связи.

Коммутация - это процесс соединения различных абонентов коммуникационной сети через транзитные узлы. Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники.

Рабочие станции подключаются к коммутаторам с помощью индивидуальных линий связи, каждая из которых используется в любой момент времени только одним, закрепленным за этой линией, абонентом. Коммутаторы соединяются между собой с использованием разделяемых линии связи (используются совместно несколькими абонентами).

Рассмотрим три основные наиболее распространенные способы коммутации абонентов в сетях:

  • коммутация каналов (circuit switching);
  • коммутация пакетов (packet switching);
  • коммутация сообщений (message switching).

Коммутация каналов

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Время передачи сообщения при этом определяется пропускной способностью канала, длинной связи и размером сообщения.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

Достоинства коммутации каналов:

  • постоянная и известная скорость передачи данных;
  • правильная последовательность прихода данных;
  • низкий и постоянный уровень задержки передачи данных через сеть.

Недостатки коммутации каналов:

  • возможен отказ сети в обслуживании запроса на установление соединения;
  • нерациональное использование пропускной способности физических каналов, в частности невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей;
  • обязательная задержка перед передачей данных из-за фазы установления соединения.

Коммутация сообщений – разбиение информации на сообщения, каждый из которых состоит из заголовка и информации.

Это способ взаимодействия, при котором создается логический канал, путем последовательной передачи сообщений через узлы связи по адресу указанному в заголовке сообщения.

При этом каждый узел принимает сообщение, записывает в память, обрабатывает заголовок, выбирает маршрут и выдает сообщение из памяти в следующий узел.

Время доставки сообщения определяется временем обработки в каждом узле, числом узлов и пропускной способности сети. Когда заканчивается передача информации из узла А в узел связи В, то узел А становится свободным и может участвовать в организации другой связи между абонентами, поэтому канал связи используется более эффективно, но система управления маршрутизации будет сложной.
Сегодня коммутация сообщений в чистом виде практически не существует.

Коммутация пакетов - это особый способ коммутации узлов сети, который специально создавался для наилучшей передачи компьютерного трафика (пульсирующего трафика). Опыты по разработке самых первых компьютерных сетей, в основе которых лежала техника коммутации каналов, показали, что этот вид коммутации не предоставляет возможности получить высокую пропускную способность вычислительной сети. Причина крылась в пульсирующем характере трафика, который генерируют типичные сетевые приложения.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Необходимо уточнить, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт (EtherNet). Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета.

Достоинства коммутации пакетов:

  • более устойчива к сбоям;
  • высокая общая пропускная способность сети при передаче пульсирующего трафика;
  • возможность динамически перераспределять пропускную способность физических каналов связи.

Недостатки коммутации пакетов:

  • неопределенность скорости передачи данных между абонентами сети;
  • переменная величина задержки пакетов данных;
  • возможны потери данных из-за переполнения буферов;
  • возможны нарушения последовательности прихода пакетов.

В компьютерных сетях применяется коммутация пакетов.

Cпособы передачи пакетов в сетях:

  • Дейтаграммный способ – передача осуществляется как совокупность независимых пакетов. Каждый пакет двигается по сети по своему маршруту и пользователю пакеты поступают в произвольном порядке.
    • Достоинства: простота процесса передачи.
    • Недостатки: низкая надежность засчет возможности потери пакетов и необходимость программного обеспечения для сборки пакетов и восстановления сообщений.
  • Логический канал - это передача последовательности связанных в цепочки пакетов, сопровождающихся установкой предварительного соединения и подтверждением приема каждого пакета. Если i-ый пакет не принят, то все последующие пакеты не будут приняты.
  • Виртуальный канал – это логический канал с передачей по фиксированному маршруту последовательности связанных в цепочки пакетов.
    • Достоинства: сохраняется естественная последовательность данных; устойчивые пути следования трафика; возможно резервирование ресурсов.
    • Недостатки: сложность аппаратной части.

В данной статье мы рассмотрели основные методы коммутации в вычислительных сетях, с описание каждого метода коммутации с указанием достоинст и недостатков.

Способы передачи цифровой информации

Цифровые данные по проводнику передаются путем смены текущего напряжения: нет на­пряжения - "О", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.

Примечания: 1. Если все абоненты компьютерной сети ведут передачу данных по каналу на одной частоте, такой канал называется узкополосным (пропускает одну частоту).

2. Если каждый абонент работает на своей собственной частоте по одному ка­налу, то такой канал называется широкополосным (пропускает много частот). Использование широкополосных каналов позволяет экономить на их количест­ве, но усложняет процесс управления обменом данными.

При цифровом или узкополосном способе передачи (рис. 6.10) дан­ные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000 м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычисли­тельные сети. Подавляющее число локальных вычислительных сетей использует узкополос­ную передачу.

Рис. 6.10. Цифровой способ передачи

Аналоговый способ передачи цифровых данных (рис. 6.11) обеспечивает широко­полосную передачу за счет использования в одном канале сигналов различных несущих частот.

При аналоговом способе передачи происходит управление параметрами сигнала несу­щей частоты для передачи по каналу связи цифровых данных.

Сигнал несущей частоты представляет собой гармоническое колебание, описываемое уравнением:

Х=Х max sin (ωt +φ 0),

где Х max - амплитуда колебаний;

ω - частота колебаний;

φ - начальная фаза колебаний.

Передать цифровые данные по аналоговому каналу можно, управляя одним из пара­метров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции ): амплитудный, частотный, фазовый.

Проще всего понять принцип амплитудной модуляции: "0" - отсутствие сигна­ла, т.е. отсутствие колебаний несущей частоты; "1" - наличие сигнала, т.е. наличие колеба­ний несущей частоты. Есть колебания - единица, нет колебаний - нуль (рис. 6.11а).

Частотная модуляция предусматривает передачу сигналов 0 и 1 на разной часто­те. При переходе от 0 к 1 и от 1 к 0 происходит изменение сигнала несущей частоты (рис. 6.116).

Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, т.е. их направление (рис. 6.11в).

В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача , которая предусматривает работу для каждого або­нента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие боль­шого количества абонентов при высокой скорости передачи данных.

Широкополосная передача позволяет совмещать в одном канале передачу цифровых данных, изображения и звука, что является необходимым требованием современных систем мультимедиа.

Пример 6.5. Типичным аналоговым каналом является телефонный канал. Когда або­нент снимает трубку, то слышит равномерный звуковой сигнал - это и есть сигнал несущей частоты. Так как он лежит в диапазоне звуковых частот, то его называют то­нальным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты - модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление произво­дят информационные байты - последовательность единиц и нулей.

Аппаратные средства

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечи­вает сопряжение с ЭВМ одного канала связи.

Рис. 6.11. Способы передачи цифровой информации по аналоговому сигналу:

а – амплитудная модуляция; б – частотная; в - фазовая

Кроме одноканальных адаптеров используются и многоканальные устройства - мультиплексоры передачи данных или просто мультиплексоры .

Мультиплексор передачи данных - устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки дан­ных - первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появле­нии сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необ­ходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие - преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специ­альное устройство - модем.

Модем - устройство, выполняющее модуляцию и демодуляцию информа­ционных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, ком­мутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства - концентраторы .

Концентратор - устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства - по­вторители .

Повторитель - устройство, обеспечивающее сохранение формы и ампли­туды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50м, а дистан­ционные - до 2000 м.

Собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи , которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.

Коммутация в городских телефонных сетях

Городская телефонная сеть - это совокупность линейных и станционных сооружений. Сеть, имеющая одну АТС, называется нерайонированной. Линейные сооружения такой сети состоят только из абонентских линий. Типовое значение ёмкости такой сети 8-10 тысяч абонентов. При больших ёмкостях из-за резкого увеличения длины АЛ целесообразно переходить на районированное построение сети. В этом случае территория города делится на районы, в каждом из которых сооружается одна районная АТС (РАТС), к которой подключаются абоненты этого района. Соединения абонентов одного района осуществляется через одну РАТС, абонентов разных РATC - через две. РАТС связываются между собой соединительными линиями в общем случае по принципу «каждая с каждой». Общее число пучков между РАТС равно количество РАТС/2. При возрастании ёмкости сети число пучков СЛ, связывающих РATC между собой по принципу «каждая с каждой», начинает резко расти, что приводит к чрезмерному возрастанию расхода кабеля и затрат на организацию связи и Поэтому при ёмкостях сети свыше 80 тысяч абонентов применяют дополнительный коммутационный узел. На такой сети связь между АТС разных районов осуществляется через узлы входящего сообщения (УВС), а связь внутри своего узлового района (УР осуществляется по принципу «каждая с каждой» или через свой УВС.

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адanтерами или сетевыми адanтерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.

Кроме одноканальных адаптеров используются и многоканальные устройства – мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных – первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Как уже говорилось ранее, для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из канала связи в ЭВМ выполнить обратное действие – преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специальное устройство – модем.

Модем – устройство, выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Наиболее дорогим компонентом вычислительной сети является канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних каналов связи на один внешний. Для выполнения функций коммутации используются специальные устройства – концентраторы.

Концентратор – устройство, коммутирующее несколько каналов связи на один путем частотного разделения.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители.

Повторитель – устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50м, а дистанционные – до 2000 м.

Перечислите и дайте определение характеристик коммуникационной сети (скорость передачи данных, пропускная способность канала связи, и пр.). Почему пропускная способность может быть ниже скорости передачи данных? Для чего используются служебные биты? Что такое достоверность передаваемой информации?

Для оценки качества коммуникационной сети можно использовать следующие характеристики:

§ скорость передачи данных по каналу связи;

§ пропускную способность канала связи;

§ достоверность передачи информации;

§ надежность канала связи и модемов.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени – секунду.

Запомните! Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости – бод. Бод – число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300 - 9600 бит/с, а для синхронных – 1200 - 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени – секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Запомните! Единица измерения пропускной способности канала связи – знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований.

Запомните! Единица измерения достоверности: количество ошибок на знак – ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10 -6 –10 -7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

Запомните! Единица измерения надежности: среднее время безотказной работы – час.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.

Что такое цифровая (узкополосная) передача данных? Что такое широкополосная (аналоговая) передача данных? Каковы достоинства и недостатки каждой? Что такое адаптер? Какие есть способы передачи цифровой информации по аналоговому каналу? Перечислите разные виды модуляции и расскажите о каждом из них (с поясняющими рисунками и примерами).

Существует 2 основные технологии передачи данных:

широкополосная передача (аналоговая)

узкополосная передача (для цифровых сигналов)

Широкополосная передача основана на использовании постоянно изменяющихся волн для переноса информации по каналу связи. Их обычно представляют синусоидальной функцией и поэтому называют синусоидальной волной.

Она может быть описана следующими параметрами:

частота - представляет собой последовательность переходов, составляющих один цикл (средняя точка, верхний экстремум, средняя точка, нижний экстремум, средняя точка). Количество таких циклов за одну секунду называется частотой синусоидальной волны. Измеряется в циклах за секунду или в герцах.

амплитуда - представляет собой относительное расстояние между экстремумами волны.

фаза отдельно взятой синусоидальной волны измеряется относительно другой синусоидальной волны (опорной) и выражается как угловой сдвиг между этими двумя волнами. Выражение "две синусоидальные волны сдвинуты по фазе на 180 градусов" означает, что в один и тот же момент одна из волн достигает максимального экстремума, а другая - минимального.

Узкополосная передача:

полярное кодирование. Основано на использовании дискретных состояний канала связи для передачи по нему информации. Эти дискретные состояния обычно представлены как некие импульсы (как правило, напряжения) и носят название прямоугольной волны. Разработано множество схем представления цифровых сигналов или цифрового кодирования. Цифровая единица представлена напряжением +12V, а цифровой ноль - напряжением -12V.

униполярное кодирование.

биполярное кодирование (с возвратом к нулю). Цифровые нули представлены отсутствием напряжения, а цифровые единицы - знакогенерирующимися 3-х вольтовыми импульсами.

Потенциальное кодирование - информативным является уровень сигнала в определенные моменты времени.

Потоковое кодирование - информативным является наличие или отсутствие тока в линии.

В сетях используется потенциальное кодирование.

Если необходимо передать цифровые данные по аналоговой линии передачи, необходим механизм представления цифровых данных в форме синусоидальной волны, чтобы показать присутствие единиц и нулей.

Если выполняется манипулирование амплитудой, то это амплитудная модуляция.

Частотой - частотная модуляция.

Фазой - фазовая модуляция.

Для передачи данных, особенно по телефонным линиям, применяется переменный ток. Непрерывный сигнал на частоте от 1000 до 2000Гц называется синусоидальной несущей частотой.

Амплитуда, частота, фаза несущей могут изменяться (модулироваться) для передачи информации.

При амплитудной модуляции используются 2 разные амплитуды сигнала, соответствующие значениям 0 и 1 (рис. Б. Амплитуда либо нулевая, либо ненулевая).

При частотной модуляции для передачи цифрового сигнала используется несколько различных частот (рис. В).

При простейшей фазовой модуляции применяется сдвиг фазы несущей частоты на 180 градусов через определенные интервалы времени (рис. Г). Два состояния кодируются наличием либо отсутствием фазового сдвига на границе каждого бита.

Устройство, принимающее последовательный поток битов, и преобразующее его в выходной сигнал, модулируемый одним или несколькими из приведенных способов, а также выполняющее обратные преобразования называется модемом. Устанавливается между цифровым компьютером и аналоговой телефонной линией. Все хорошие модемы используют комбинированные методы модуляции сигналов для передачи максимального количества бит.

Сравнение широкополосной и узкополосной передачи сигналов.

Телефонная линия - широкополосная линия связи.

Линия T1 - узкополосной канал.

Соответственно и передаваемая информация может быть и аналоговой и цифровой.

Выделяют 2 типа оборудования:

DTE - терминальное оборудование.

DCE - телекоммуникационное оборудование.

DTE генерирует информацию в форме данных, которые могут быть переданы по каналу связи. Она может быть цифровой и аналоговой.

DCE получает данные от DTE в его формате и преобразовывает их в формат, совместимый с существующим каналом связи.

Схема кодирования:

На рисунке представлена матрица из 4-х элементов. Столбцы определяют природу линий связи, а строки - вид информации, генерируемый устройством DTE.

I квадрант. Информация в аналоговой форме должна быть передана через широкополосной канал (речь, передаваемая по телефонной линии (звуковой сигнал (DTE) -> микрофон (DCE) -> аналоговый сигнал)).

II квадрант. Цифровая информация должна быть передана по аналоговому каналу. Схема преобразования: ПК (DTE) -> модем (DCE) -> аналоговый канал.

III квадрант. Поток аналоговой информации должен быть передан через цифровой канал. Видеоинформация (DTE) -> кодек (DCE) -> цифровая линия T1.

IV квадрант. Цифровая информация должна быть передана по цифровой линии. Выполняется преобразование схемы кодирования сигнала, используемого DTE, в схему, используемую линией связи.

Например, RS-232 (COM порт) использует полярную схему кодирования сигналов, а канал связи использует кодирование BPRZ, отличающееся от предыдущего. DCE, осуществляющий это преобразование называется модулем обслуживания канала и данных (CSU/DSU).

Оборудование DCE играет важную роль в реализации физического уровня. Используя различные типы функций DCE, любая информация (аналоговая или цифровая) может быть приведена в форму, совместимую с любым каналом связи (узкополосным или широкополосным).

Модуля́ция (лат. modulatio - мерность, размерность) - процесс изменения одного или нескольких параметров высокочастотного модулируемого колебания по закону информационного низкочастотного сообщения (сигнала). В результате спектр управляющего сигнала переносится в область высоких частот, ведь для эффективного вещания в пространство необходимо чтобы все приёмо-передающие устройства работали на разных частотах и «не мешали» друг другу. Это процесс «посадки» информационного колебания на априорно известную несущую. Передаваемая информация заложена в управляющем сигнале. Роль переносчика информации выполняет высокочастотное колебание, называемое несущим. В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

Аналоговая модуляция

Амплитудная модуляция (АМ)

Амплитудная модуляция с одной боковой полосой(SSB - однополосная АМ)

Балансная амплитудная модуляция (БАМ) - АМ с подавлением несущей

Квадратурная модуляция (QАМ)

Угловая модуляция

Частотная модуляция (ЧМ)

Линейная частотная модуляция (ЛЧМ)

Фазовая модуляция (ФМ)

Сигнально-кодовая модуляция (СКМ), в англоязычном варианте Signal Code Modulation (SCM)

Сигма-дельта модуляция (∑Δ)

Цифровая модуляция

Импульсная модуляция

Импульсно-кодовая модуляция (ИКМ или PCM - Pulse Code Modulation)

Широтно-импульсная модуляция (ШИМ)

Амплитудно-импульсная модуляция (АИМ)

Частотно-импульсная модуляция (ЧИМ)

Фазово-импульсная модуляция (ФИМ

Наиболее распространенные виды топологий сетей:

Линейная сеть . Содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами.

Кольцевая сеть. Сеть, в которой к каждому узлу присоединены две и только две ветви.

Древовидная сеть . Сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь.

Звездообразная сеть. Сеть, в которой имеется только один промежуточный узел.

Ячеистая сеть . Сеть, которая содержит по крайней мере два узла, имеющих два или более пути между ними.

Полносвязанная сеть. Сеть, в которой имеется ветвь между любыми двумя узлами. Важнейшая характеристика компьютерной сети - её архитектура.

Архитектура сети - это реализованная структура сети передачи данных, определяющая её топологию, состав устройств и правила их взаимодействия в сети . В рамках архитектуры сети рассматриваются вопросы кодирования информации, её адресации и передачи, управления потоком сообщений, контроля ошибок и анализа работы сети в аварийных ситуациях и при ухудшении характеристик.

Наиболее распространённые архитектуры:

  • Ethernet (англ. ether - эфир) - широковещательная сеть. Это значит, что все станции сети могут принимать все сообщения. Топология - линейная или звездообразная. Скорость передачи данных 10 или 100 Мбит/сек.
  • Arcnet (Attached Resource Computer Network - компьютерная сеть соединённых ресурсов) - широковещательная сеть. Физическая топология - дерево. Скорость передачи данных 2,5 Мбит/сек.
  • Token Ring (эстафетная кольцевая сеть, сеть с передачей маркера) - кольцевая сеть, в которой принцип передачи данных основан на том, что каждый узел кольца ожидает прибытия некоторой короткой уникальной последовательности битов - маркера - из смежного предыдущего узла. Поступление маркера указывает на то, что можно передавать сообщение из данного узла дальше по ходу потока. Скорость передачи данных 4 или 16 Мбит/сек.
  • FDDI (Fiber Distributed Data Interface ) - сетевая архитектура высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи - 100 Мбит/сек. Топология - двойное кольцо или смешанная (с включением звездообразных или древовидных подсетей). Максимальное количество станций в сети - 1000. Очень высокая стоимость оборудования.
  • АТМ (Asynchronous Transfer Mode ) - перспективная, пока ещё очень дорогая архитектура, обеспечивает передачу цифровых данных, видеоинформации и голоса по одним и тем же линиям. Скорость передачи до 2,5 Гбит/сек. Линии связи оптические.

Аппаратные средства компьютерных сетей.



1.Компьютеры;

2. Устройства сопряжения ЭВМ с каналом связи;

3. Каналы связи

4. Устройства, соединяющие (коммутирующие) каналы связи

5. Устройства, соединяющие локальные сети.

Устройства сопряжения ЭВМ с каналом связи

Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи.

  • Техническое устройство, выполняющее функции сопряжения ЭВМ с каналом связи, называется адаптером , или сетевым адаптером. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.
  • Кроме одноканальных адаптеров используются многоканальные устройства сопряжения – мультиплексоры. Мультиплексоры – это устройство сопряжения ЭВ с несколькими каналами связи.
  • Для передачи цифровой информации необходимо поток битов преобразовать в аналоговый сигнал. А при приеме выполнить обратное преобразование. Такие преобразования выполняет модем. Модем – устройство, выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.

Сетевые кабели

  • (коаксиальные , состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки;
  • оптоволоконные ;
  • кабели на витых парах , образованные двумя переплетёнными друг с другом проводами, и др.).

Устройства, соединяющие (коммутирующие) каналы связи

Наиболее дорогим компонентом ВС является канал связи. Поэтому при построении вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних канала связи на один внешний. Для выполнения функции коммутации используются специальные устройства – концентраторы.

  • Хабы (концентраторы ) и коммутирующие хабы (коммутаторы ) расширяют топологические, функциональные и скоростные возможности компьютерных сетей. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами . К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.
  • В ЛВС где передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители. Повторитель – устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние. Локальный повторитель соединяет фрагменты сети до 50 м. а дистанционный – до 2000 м.

Соединения локальных сетей

Для соединения локальных сетей используются следующие устройства, которые различаются между собой по назначению и возможностям:

· Мост (англ. Bridge ) - связывает две локальные сети. Передаёт данные между сетями в пакетном виде, не производя в них никаких изменений . мосты могут фильтровать пакеты , охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.

· Маршрутизатор (англ. Router ) объединяет сети с общим протоколом более эффективно, чем мост. Он позволяет, например, расщеплять большие сообщения на более мелкие куски, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета.

Маршрутизатор может пересылать пакеты на конкретный адрес (мосты только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов.

· Мостовой маршрутизатор (англ. Brouter ) - это гибрид моста и маршрутизатора, который сначала пытается выполнить маршрутизацию, где это только возможно, а затем, в случае неудачи, переходит в режим моста.

· Шлюз (англ. GateWay ), в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы . Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. Таким образом, шлюзы не просто соединяют сети, а позволяют им работать как единая сеть.

Протоколы работы в сети

Отдельные участки Интернет представляют собой сети различной архитектуры, которые связываются между собой с помощью маршрутизаторов. Передаваемые данные разбиваются на небольшие порции, называемые пакетами. Каждый пакет перемещается по сети независимо от других пакетов.

Для преодоления несовместимости интерфейсов отдельных компьютеров вырабатывают специальные стандарты, называемые протоколами коммуникации.

Протокол коммуникации - это согласованный набор конкретных правил обмена информацией между разными устройствами передачи данных. Имеются протоколы для скорости передачи, форматов данных, контроля ошибок и др.

Сети в Интернет неограниченно коммутируются (т.е. связываются) друг с другом, потому что все компьютеры, участвующие в передаче данных, используют единый протокол коммуникации TCP/IP (читается “ти-си-пи/ай-пи”).

На самом деле протокол TCP/IP - это два разных протокола, определяющих различные аспекты передачи данных в сети:

  • протокол TCP (Transmission Control Protocol) - протокол управления передачей данных, использующий автоматическую повторную передачу пакетов, содержащих ошибки; этот протокол отвечает за разбиение передаваемой информации на пакеты и правильное восстановление информации из пакетов получателя;
  • протокол IP (Internet Protocol) - протокол межсетевого взаимодействия, отвечающий за адресацию и позволяющий пакету на пути к конечному пункту назначения проходить по нескольким сетям.

Схема передачи информации по протоколу TCP/IP такова: протокол ТСР разбивает информацию на пакеты и нумерует все пакеты; далее с помощью протокола IP все пакеты передаются получателю, где с помощью протокола ТСР проверяется, все ли пакеты получены; после получения всех пакетов протокол ТСР располагает их в нужном порядке и собирает в единое целое.

Выше мы рассмотрели с вами, что Интернет состоит из большого множества компьютеров, одни из них могут подключаться лишь на время, тогда как другие имеют постоянный сетевой IP-адрес (хост). Отличие Сети от всемирной Паутины в том, что за точку отсчета берется лишь тот, на котором установлена специальная программа для поддержки сервера WWW. Чаще всего такой компьютер называют «сервером».

Каким образом пакет находит своего получателя ?

Каждый компьютер, подключенный к сети Интернет имеет два равноценных уникальных адреса: цифровой IP-адрес и символический доменный адрес. Присваивание адресов происходит по следующей схеме: международная организация Сетевой информационный центр выдает группы адресов владельцам локальных сетей, а последние распределяют конкретные адреса по своему усмотрению.

IP-адрес компьютера имеет длину 4 байта. Обычно первый и второй байты определяют адрес сети, третий байт определяет адрес подсети, а четвертый - адрес компьютера в подсети. Для удобства IP-адрес записывают в виде четырех чисел со значениями от 0 до 255, разделенных точками, например: 145.37.5.150. Адрес сети - 145.37; адрес подсети - 5; адрес компьютера в подсети - 150.

сеть Интернет